Calculus of Variations

Consider a function with fixed endpoints x(tg) = 2o and z(¢t;) = x; which is a
piceswise smooth scalar function defined for all ¢ € [tg,t1]. There exists a scalar
function of this function z() , its derivative @(-) and time ¢: f[t,z,&] which
is also defined throughout the entire interval ¢ € [to,?1]. It is convenient that
this new function f(-) is continuous and contains as many partial derivatives as
necessary. The functional J(-) is now the sum of f(-) over the range of t.

t1

J(x(-)= t flt (), 2(2)]dt (1)
0
The global absolute minimum of J(-) occurs at z* if and only if J(z * (+)) <
J(z(+)) Vz € {domain}. The local minimum of the integral occurs at x*
if within the immediate neighborhood of z* the values of J(-) are greater than
those at *. At a local minimum — a global minimimum is also a local minimum
— the rate of change of the functional is zero, the function is stationary.
Using various theorems of the calculus of variations presented in the book
the Euler-Lagrange form can be derived

o= fad™(t) + faai®(t) VEeT (2)

Where I is the domain on which all the derivatives are continuous.

For mechanics problems the inverse function is of primary importance. If
the function x(t) = g(t, «r, ) is written in terms of a two paramater function,
find the integrands f(-) which make the function J(-) stable. Assume that there
exist continuous functions ¢(-) and ¢(-) to eliminate the constants.
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() = gqult, ot z(t),2(t)), v(t, x(t), 2(1))] (3)
Then #(t) = Glt, 2(£).3(8)] = gult, d(t, 2(t), #(2)), (¢, 2(£), #(£))]. And
fao—fat =) f 20 = Gf i (4)

This solution must hold for every initial condition {x[to], Z[to]}.
Letting M(t, z, #)=f 44 (t,z, ). And assuming that the derivative operation
is linear f,» = f ¢, then

M7t + J',‘M,w + GM@ + GJ;-M =0 (5)

The general solution to this pde is M = %. Where @ is differentialbe nonzero
but otherwise arbitrary and

O= GXP{/G@ [t7g(t7a7ﬂ)7gt(taaaﬂ)] dt} (6)
Finally functions f(-) can be found by integrating
T rq
ftd) = [ [ MGt pdpda + i0(10) + tt) (7)
o Jo

Where A(-) and p(-) are otherwise arbitrary functions which satisfy the conti-
nuity conditions and are defined on the required domain.



Example

Consider a unit mass subjected to a force P(t,x), where ¢ is time and x is
displacement. For rectilinear motion it follows from Newton’s second law:

i(t) = P(t,2(t)) (8)

Suppose the applied force is derivable from potential, that is there is a function
U(-) such that
oU(t,x)
5 (9)
x
It follows from Hamilton’s principle that the equation of motion for the particle
is

P(t,z) =

J(:c(-)):/tl B:‘cz(t)—kU(Lx(t)) dt (10)

And the Euler-Lagrange equation returns & — U, x = 0, the same as Newton’s
law of motion.

To find other stationary principles that apply to force P (other than Hamil-
tons) consider an equation of motion of the form:

Z(t) = Gt,x(t), Z(¢)) (11)
There are an infinity of solutions, nevertheless try the form:
G(t,x, i) = a(t,z) + b(t)r + c(z)r?. (12)
Choose ®(«, 3) = 1 for simplicity. Then
M(t,z,7) = O 't o(t,z,7),¢(t, z,7)] (13)
Combine to find
O] = exp] / b(t)dt + 2 / ()} (14)
Substituting into f(-)
f) = %Qfl(t,x)x'z + /a(t,x)@fl(t,x)d:c (15)
In other words, the Euler-Lagrange equation for the integral is
i=alt,z(t)) + b(t)i(t) + c(z(t))i>(t) (16)

The force function is related to the potential

Glt,z,4) = a(t, ) — %i’x) (17)
And finally
ft,z,r) = %7‘2 + U(t, ) (18)

Which is a special case of Hamilton’s principle.



